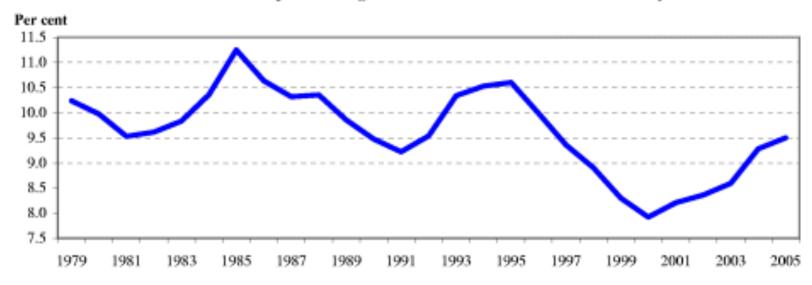
Energy in China: Present and Future

A Brief Introduction China's Environment Class Revised November 30, 2011

The basic equation: I = P*A*T

Impact = Population x Affluence x Technology

What will be the impact on China's environment for the next 50 years?


Population will increase slightly, level off, and perhaps decline slightly

Affluence is bound to increase

Technology has room for improvement

Recent Economic Growth

The estimated potential growth rate of the Chinese economy

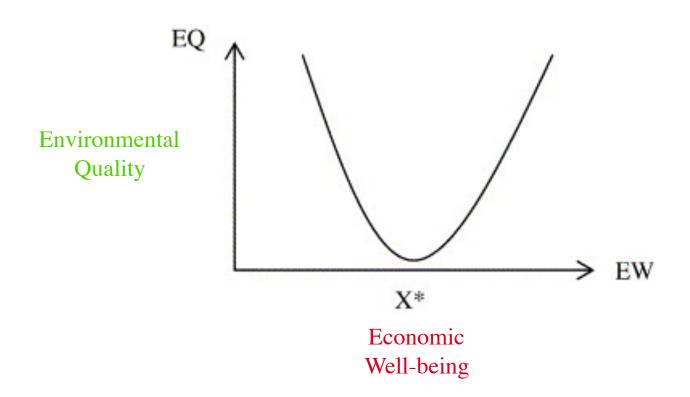
Note: The potential growth rate is estimated using trend population, participation rates and actual capital stock.

These variables are combined using the coefficients from an estimated Cobb-Douglas production function.

Source: OECD calculation.

Economic Survey of China 2005: Key challenges for the Chinese economy, OECD

Projected economic growth


Table 3. Growth Forecasts (average annual growth rates in %)

	Individual variables						GDP			
	Wage	Capital	Wage	Capital	Labor	Equati	on (2)	Labor	share	
	(I)	(II)	(III)	(IV)				assume	d fixed	
						I+II	III+IV	I	III	
2000-05	4.15	6.98	5.18	10.91	0.83	5.80	8.09	4.98	6.05	
2005-10	8.18	6.37	6.29	10.85	0.71	7.84	8.83	8.89	7.05	
2010-15	7.76	5.63	7.81	10.75	0.20	7.06	9.42	7.96	8.03	
2015-20	6.36	5.40	11.79	10.71	-0.80	5.50	10.85	5.56	10.90	
2020-25	4.63	4.14	14.22	10.54	-0.62	4.06	12.02	4.01	13.51	
2000-25	6.20	5.70	9.01	10.75	0.06	6.05	9.83	6.26	9.07	
Cumulative:										
2000-25	350.04	299.69	763.49	1184.75	1.58	333.77	942.78	356.58	777.14	

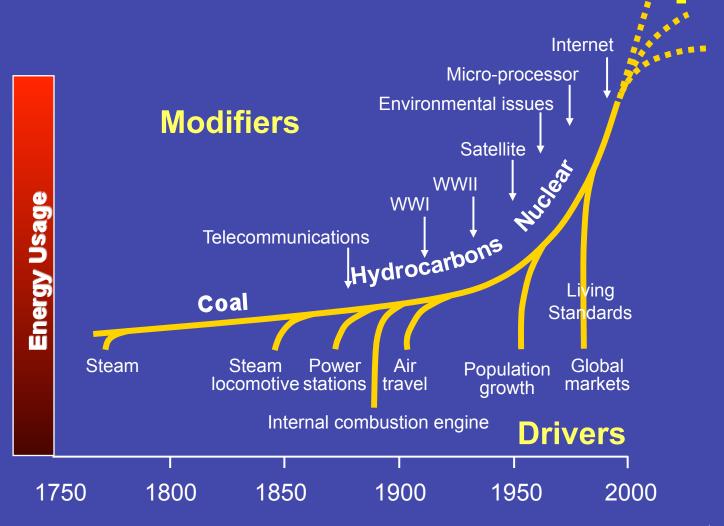
China's Economic Growth 1978-2025: What We Know Today about China's Economic Growth Tomorrow

By

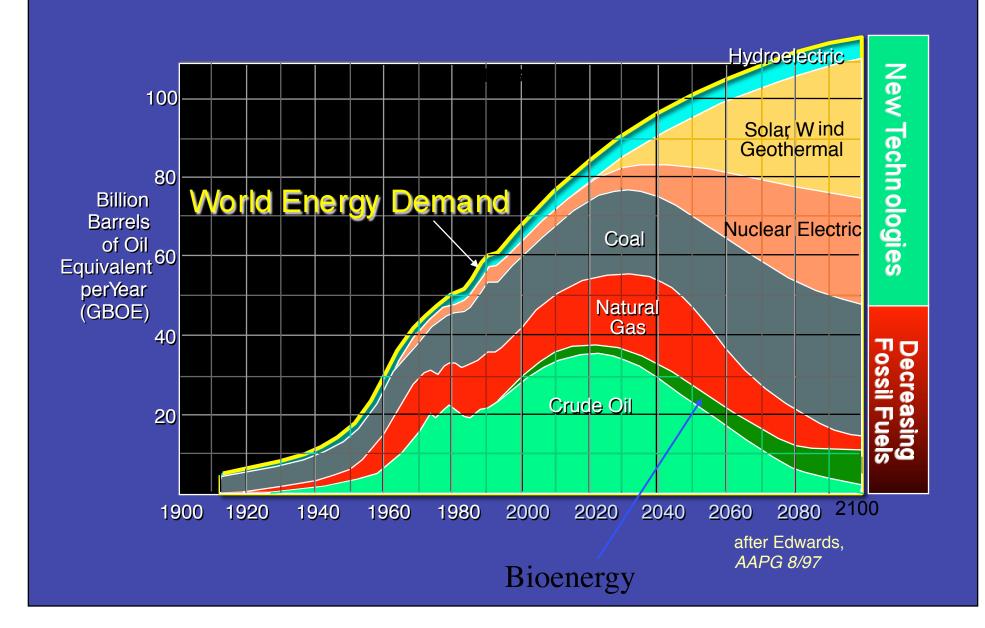
The Other Side of Affluence: Does the Environmental Kuznetz Curve Work?

Energy as a Resource: Supply and Sustainability

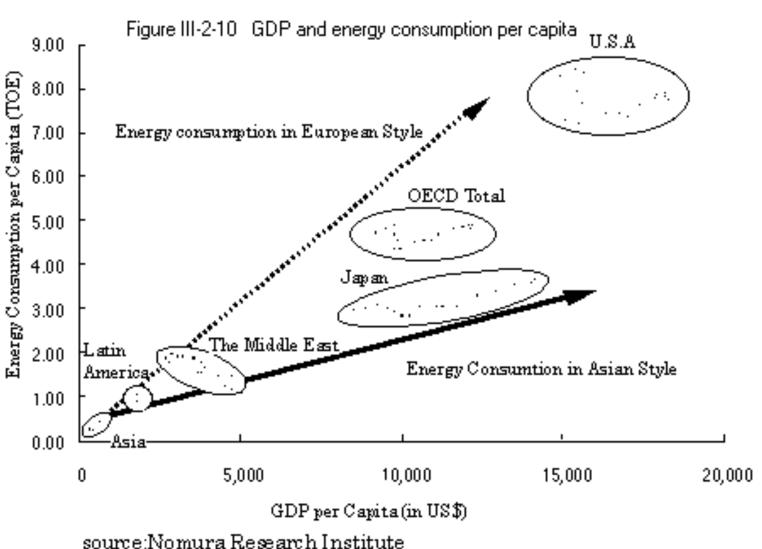
- Water
- Energy
- Forests
- Agricultural Land



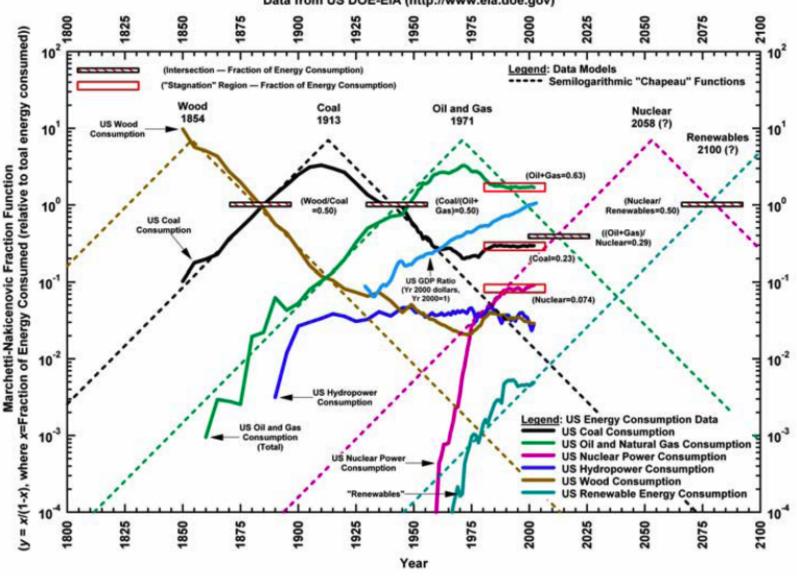
Issues with Energy and the Environment:


- The total amount of energy used
- The efficiency of energy use
- The sources of energy

Energy Usage: 1750-2000



Projected World Supplies



GDP and energy consumption

Energy Consumption History for the United States — Marchetti-Nakicenovic Fraction Function (International Institute for Applied Systems Analysis (cited in *Oil and Gas Journal* 26 January 2004))

Data from US DOE-EIA (http://www.eia.doe.gov)

Energy and GDP in China, 1980-2004

The announced policy goal: quadruple GDP while only doubling energy, by 2020

Uses of Energy in China

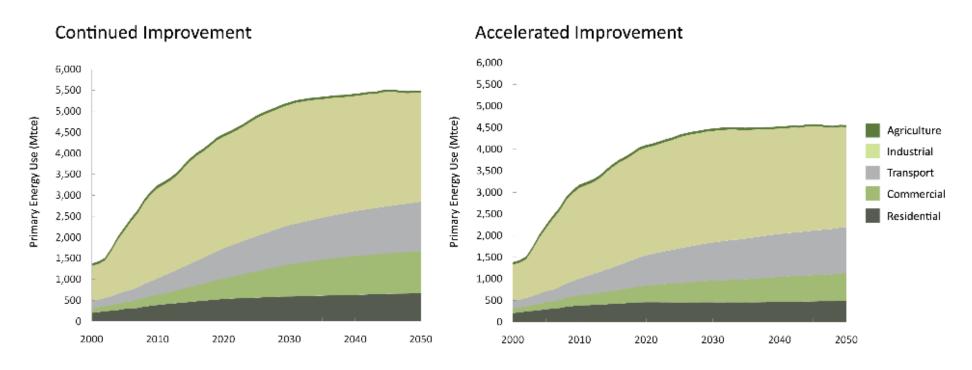
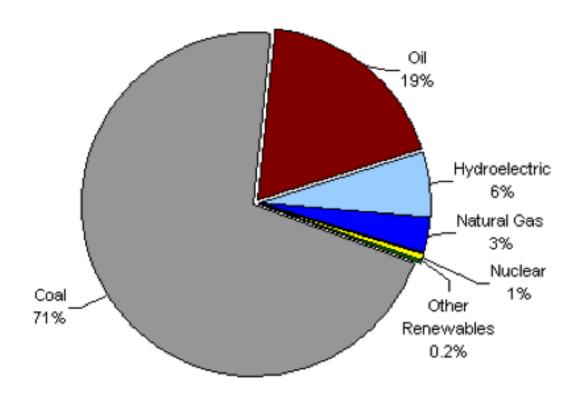


Figure 1: Primary Energy Consumption for CIS and AIS Scenarios Source: Lawrence Berkeley National Laboratory

Sources of Increased Demand, 2010-2025


- Transport: More and more private cars
- Industry: Continued growth, leveling off
- Commercial: Office space, and modern skyscrapers
- Residential: Upscaling, urbanization

Sources of Decreasing Demand, Far Future

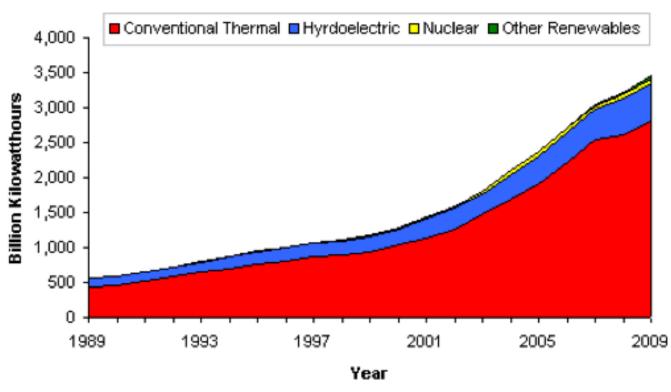
- Saturation in transport and residential
- Industry moving to high-tech
- Efficiency
- Switch to renewables
- Environmental Kuznets effects?

China Energy Sources

Total Energy Consumption in China, by Type (2008)

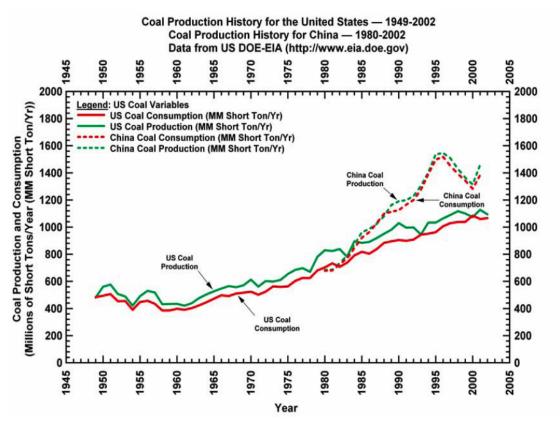
Source: EIA International Energy Statistics 2008

Electricity generation


Year	TOTAL	% Increase	Thermal	% Increase	Hydro	%Increase
2003	18,462.10	15.4	15,421.26	16.6	2,592.79	3.6
2004	21,302.28	14.9	17,701.71	14.4	3,065.23	17.6
2005	24,145.76	13.3	19,857.23	12.5	3,643.93	19.5
2006	27,557.46	13.7	23,188	17.1	3,783.19	3.5
2007	32,086.84	14.9	27,012.55	14.6	4,343.26	15.4
2008	34,046	5.5	27,857	3.0	5,276	17.5
2010	41400	13.9				

Electricity by Source, 2010

Source	Capacity
Thermoelectric (mostly coal)	700GW
Hydroelectric (mostly dams)	210 GW
Nuclear	10.8 GW
Wind	31 GW


Electricity by Type

China's Electricity Generation by Type, 1989-2009

Source: EIA International Energy Statistics

Coal: The cheapest solution

Environmental problems with coal:

- Air pollution
- Acid rain
- Highest CO₂ emissions

Coal: The cheapest solution

Country	Oil Reserves (B STB)	Oil Production (MMSTB/D)	Oil Consumption (MMSTB/D)	Net Oil Imports (MMSTB/D)	Oil Wells Drilled in 2002/total wells	
China	18.3	3.39	5.26	1.87	$\approx 70,000^2$ (total)	
United States	22.4	5.7 (8.8 ¹)	19.9	11.2	4964/531,010 ³	
Country	Conventional Gas Reserves (tcf)	Gas Production (tcf/Yr)	Gas Consumption (tcf/Yr)	Gas Imports (tcf/Yr)	Gas Wells Drilled in 2002/total wells	Unconventional Gas Reserves (tcf)
China	53.3	1.07	1.07	_	_	10604
United States	183	19.4	22.3	4.0	15947/356,767 ³	163 ⁵ /1200 ⁶
Country	Coal Reserves (B sht ton)	Coal Production (B sht ton/Yr)	Coal Consumption (B sht ton/Yr)			
China	126.2	1.49	1.38			
United States	275.1	1.13	1.06			
Country	Electric Generation Capacity (Gigawatts)	Electricity Generation (B Kilowatt-hr)	Thermal Electricity Generation (Percent)	Nuclear Electricity Generation (Percent)	Hydroelectric Electricity Generation (Percent)	"Renewable" Electricity Generation (Percent)
China	318	1420	74.5	0.6	24.9	
United States	813	3839	74	12	12	2

The temptations of coal

- Cheap
- Abundant
- Technology in place

China's Clean Energy Goals

Metric	2010 Actual	2015 Goal	2020 Goal
Non-fossil energy (% of final energy consumption)	8% (about)	11.4%	15%
Hydro (% of final energy consumption)		6.5% (about)	>7.5%
Hydro	210GW		300GW
Nuclear	10.8GW	48GW	80GW
Wind (connected)	31GW		30GW (150GW proposed)
Solar PV	700MW		1.8GW (20GW proposed)
Solar hot water		400m m2	300m m2 (no new target yet)

http://switchboard.nrdc.org/blogs/mdavidson/clean_energy_standard_how_chin.html

The altertnatives: Hydroelectric Power

China's Total Electric Power 2010: 960Gw

Share of Hydroelectric Power: 210 Gw

World's Largest Hydroelectric Plants

Name of dam		Rated cap Present	acity (MW) Ultimate	Year Built
Itaipu Guri Grand Coulee Sayano-Shushei Krasnoyarsk Churchill Falls La Grande 2 Bratsk Moxoto	Brazil/Parag Venez Washington nsk Russia Russia Canad Russia Brazil	tuela 10,00 6,494 a 6,400 a 6,000 da 5,423 da 5,323	00 10,000 4 6,494 0 6,400 0 6,000 8 5,428 8 5,328 0 4,500	
Ust-Ilim Tucurui	Russia Brazil		0 4,320	1977 1984

Advantages

- Clean
- Relatively unexploited
- Renewable

Environmental Problems

- Removes agricultural land
- Destroys habitat
- Salinization in coastal regions

Oh, and what about that dam...

Why Build it?

National Pride

Hydro Power

Flood Control

Navigation

Problems:

Pollution

Endangered Species

Climate change?

Seawater incursion

Cultural Heritage

Relocation: 1.8 million

Disastrous collapse??

Oh, and what about that dam...

Why Build it?

National Pride

Hydro Power

Flood Control

Navigation

In January 2000, a senior Chinese official in Kunming expressed to me what I believe to be a deeply rooted conviction in China: "We are sensitive to considerations of the environment and the importance of the conservation of nature, but we must have power; coal is dirty, water clean and abundant, a rich and unused resource; we have no alternative." In all other sectors of China's economy Maoism has been displaced by market principles, but not in the hydro-sector.

Gavan McCormack, "Water Margins: competing paradigms in China, 2001

Hydro Power World's Largest Hydroelectric Plants

China's Total Electric Power Needs 2010: 450Gw

Desired share of Hydroelectric Power: 150 Gw

> Sanxia: 18 Gw

Name of dam	Location	Rated cap Present	acity (MW) Ultimate	Year Built
Itaipu Guri Grand Coulee Sayano-Shusher Krasnoyarsk Churchill Falls La Grande 2 Bratsk Moxoto	Washingto	ezuela 10,0 n 6,49 ia 6,40 ia 6,00 ida 5,42 ida 5,32 ia 4,50	00 10,000 4 6,494 0 6,400 0 6,000 8 5,428 8 5,328 0 4,500	
Ust-Ilim Tucurui	Russ Braz	ia 4,32	0 4,320	1977 1984

Relocation Problems

Quality of the land available

New ecotechnical adaptation

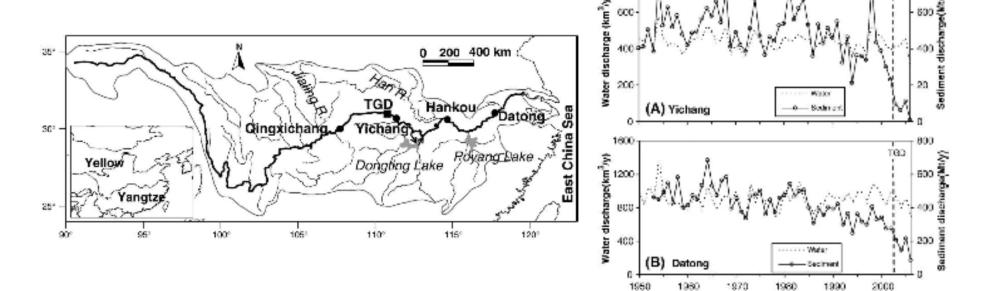
Lack of education for urban life

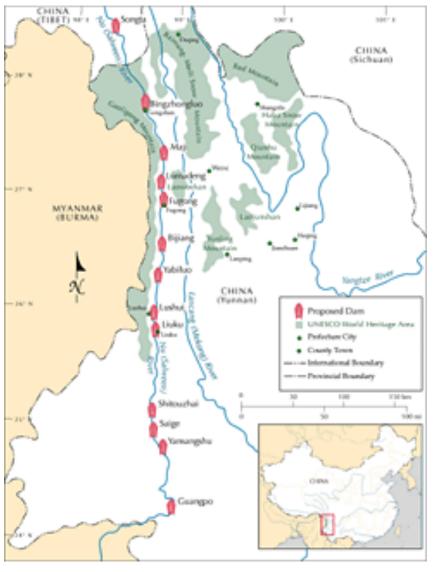
Dialect differences

Insufficient funds

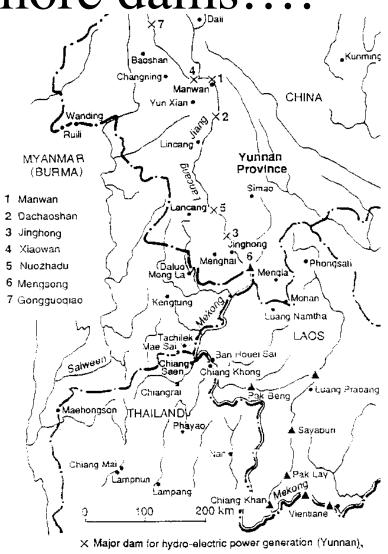
Corruption and official indifference

Sedimentation changes since 2003




Table 1
Sediment budget in the middle-lower reaches of the Yangtze River (unit: Mt(y)

Year Yichang	Dongting	Ham	Hankou	Poyang	Datong	Channel deposition(+)/erosion(-)			
Lake River			Lake		Yichang to Hankou (630 km)	Hankou to Datong (510 km)	Yichang to Datong (1140 km)		
1950-2000	501	-86	56	404	10	433	67	-19	48
2001	299	-23	3	285	12	276	-6	21	15
2002	228	- 16	3	239	14	275	-24	-22	-46
2003	98	-3	14	165	18	206	-56	-23	-79
2004	64	0	5	136	14	147	-67	3	-64
2005	110	-8	17	174	16	216	-55	-26	-81
2006	9	14	3	58	14	85	-32	-13	-45


Sedimentation changes since 2003

- More is building up behind the dam (max depth 56m)
- Downstream reaches have changed from deposition to erosion
- The Yangtze delta has gone from expansion to contraction

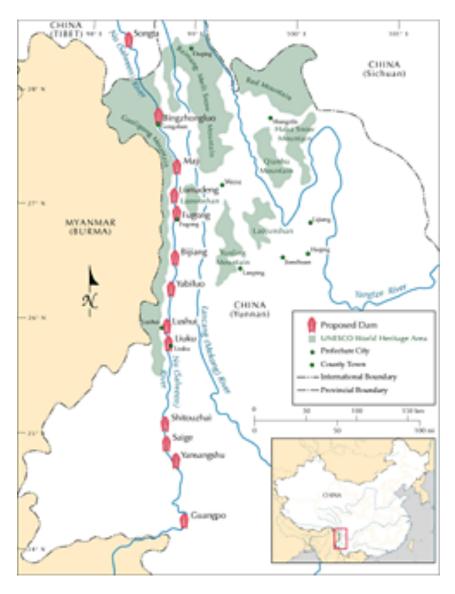
There are still more dams...

Nu (Salween) River

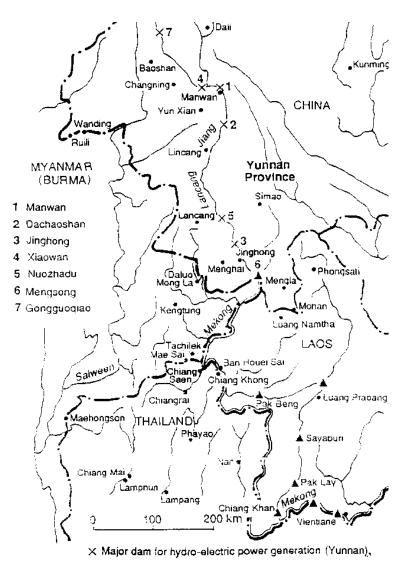
▲ 'Run of the river' hydro-electric power project

Lancang (Mekhong) River

There are still more dams....


Table 2. LANCANG RIVER CASCADE

	Gong- guoqiao	Xiao- wan	Man- wan	Dachao - shan	Nuo- zhadu	Jing- hong	Gan- Ianba	Meng- song
Elevation ¹	1,319	1,240	994	899	812	602	533	519
Reservoir volume ²	5.10	151.32	10.60	8.84	223.68	12.33	n.a.	n.a.
Installed power ³	710	4,200	1,500	1,350	5,500	1,500	150	600
Annual output ⁴	40.60	188.90	78.05	67.00	237.77	80.59	7.80	33.80
Wall ⁵	n.a.	292	126	110	n.a.	118	n.a.	n.a.
Status ⁶	design	2002- 2012	1986- 1996	1996- 2003	pre f.s.	2006- 2013	design	design


Sanxia: 1500

Note: The dams listed (left to right) run from north to south. 1. Elevation is level of the dam's reservoir in meters above sea level. 2. Volume is reservoir holding capacity in hundred million cubic meters. 3. Installed power is installed power capacity in megawatts. 4. Annual output is annual electrical power output in hundred million kilowatt hours. 5. Wall is the height in meters of the main dam wall. 6. Status indicators are: already built; under construction (with years); feasibility stage (f.s.); pre-feasibility stage (pre f.s.); or design stage. Table source: Hayao Adachi 's website:

There are still more dams....

Nu (Salween) River

▲ 'Run of the river' hydro-electric power project

Lancang (Mekhong) River

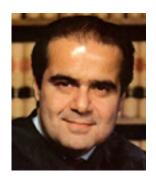
There are still more dams....

Table 2. LANCANG RIVER CASCADE

	Gong- guoqiao	Xiao- wan	Man- wan	Dachao - shan	Nuo- zhadu	Jing- hong	Gan- Ianba	Meng- song
Elevation ¹	1,319	1,240	994	899	812	602	533	519
Reservoir volume ²	5.10	151.32	10.60	8.84	223.68	12.33	n.a.	n.a.
Installed power ³	710	4,200	1,500	1,350	5,500	1,500	150	600
Annual output ⁴	40.60	188.90	78.05	67.00	237.77	80.59	7.80	33.80
Wall ⁵	n.a.	292	126	110	n.a.	118	n.a.	n.a.
Status ⁶	design	2002- 2012	1986- 1996	1996- 2003	pre f.s.	2006- 2013	design	design

Note: The dams listed (left to right) run from north to south. 1. Elevation is level of the dam's reservoir in meters above sea level. 2. Volume is reservoir holding capacity in hundred million cubic meters. 3. Installed power is installed power capacity in megawatts. 4. Annual output is annual electrical power output in hundred million kilowatt hours. 5. Wall is the height in meters of the main dam wall. 6. Status indicators are: already built; under construction (with years); feasibility stage (f.s.); pre-feasibility stage (pre f.s.); or design stage. *Table source:* Hayao Adachi 's website:

You be the judge, again:


Problems Caused by Energy Shortages in China

Lack of electricity in rural areas
Frequent blackouts
Increased reliance on coal
Possible belligerence over oil

What are the Environmental Costs of More Dams?

Deprivation of Downstream peoples
Loss of Biodiversity
Loss of Scenic Beauty
All the problems of relocation
Possible disasters

Carbon Emissions



Figure 2: Carbon Emissions Outlook for CIS and AIS Scenarios Source: Lawrence Berkeley National Laboratory

Lack of Energy Solutions

Energy Sources

- Oil
 - Short supply
 - Greenhouse gas
 - Air Pollution
 - No good alternative for transportation
- Coal
 - Greenhouse gas
 - Air pollution
- Hydroelectric
 - Supply limited
 - Agriculture land and habitat loss
- Nuclear
 - Dangerous
 - No domestic fuel source

- Energy efficiency
 - Gains to be made
 - Requires incentives
 - Requires institution building
 - In the absence of technological breakthrough, will not be enough

What Needs to be Done?

- Develop long-term sustainable energy strategy, including incentives for clean and renewable sources
- Increase funding for environmental regulation
- Develop price structure for resources that will promote conservation
- Make environmental protection a primary element of cadre evaluations
- Allow citizen groups to form and lobby for environmental reform